Traditional Values, Modern Vision

Maths Calculation Policy

Reviewed: November 2023
Next review due: November 2025

Introduction:

The following policy has been written in line with the programmes of study taken from the National Curriculum for Mathematics (2014) for the teaching and learning of mathematics. Its primary aim is to offer pupils a consistent and smooth progression in the teaching and learning of calculations across the school. This policy provides guidance on the calculation strategies, methods and progression from Years 1 to 6 . It aims to help parents to help their children, as well as provide guidelines for teachers to provide consistency in the teaching of mathematics across the school.

Aims of the policy:

Through the National Curriculum, we aim to ensure that all pupils:

1. become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
2. reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language.
3. can solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

Progression in calculation:

This policy will ensure consistency and progression in our approach to the learning and teaching of calculations across the school ensuring smooth transition from one year group to the next. It will enable our children, teachers and parents to work in partnership, developing an efficient, reliable, formal written method of calculation for all four operations and to use these methods accurately with confidence for understanding.

White Rose Maths:

As a school, we follow the White Rose Maths scheme and use their methods of calculation. These can use concrete resources, pictoral or abstract methods. Children are taught maths through fluency, reasoning and problem solving. We believe it is important that any type of calculation is presented within a real life context or given in the form of a problem to be solved. This not only serves to help build children's understanding of the purpose of calculation, but also develops their ability to recognise what operations to use and when.

Addition
Skill: Add 1-digit numbers within 10

Skill: Add two 2-digit numbers to 100		Year: 2/3
	$38+23=61$ $\begin{array}{r}38 \\ +23 \\ \hline 61 \\ \hline\end{array}$ 1	Children can use a blank number line and other representations to count on to find the total. Encourage them to jump to multiples of 10 to become more efficient. From Year 3, encourage children to use the formal column method when calculating alongside straws, base 10 or place value counters. As numbers become larger, straws become less efficient.

Skill: Add numbers with up to 3 digits								Year: 3
		?						Base 10 and place value counters are the most effective
		265				164	J	manipulatives when adding numbers with up to 3 digits.
		$265+164=429$						Ensure children write out their calculation alongside any
Hundrath	a	Orne	$\begin{array}{r} 265 \\ +164 \end{array}$		Hundreds	Tens	Ones	to the written column
		****			- ${ }^{-}$	0000	000	method.
K			e^{k}			0000	-100	Plain counters on a place value grid can also be used to support learning.

Subtraction

Skill: Subtract 1 and 2-digit numbers to 100	Year: $2 / 3$
$?$ 28 $65-28=37$	Children can also use a blank number line to count back to find the difference. Encourage them to jump to multiples of 10 to become more efficient. From Year 3, encourage children to use the formal column method when calculating alongside straws, base 10 or place value counters. As numbers become larger, straws become less efficient.

Times Tables

Skill: 2 times table	Year: 2
	Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the two times table, using concrete manipulatives to support. Notice how all the numbers are even and there is a pattern in the ones. Use different models to develop fluency.

Skill: 8 times table															Year: 3
08090080609000						2		4	5			(3)		10	Encourage daily counting in multiples, supported by a number line or a hundred square. Look for patterns in the eight times table, using manipulatives to support. Make links to the 4 times table, seeing how each multiple is double the fours. Notice the pattern in the ones within each group of five multiples. Highlight that all the multiples are even using number shapes to support.
					11	12	13	14	15	(1)	17	18	19	20	
					21	22	23	(2)	25	26	27	28	29	30	
					31	(3)	33	34	35	36	37	38		(1)	
						42	43	44	45	46	47	(1)	49	50	
					51	52	53	54	55	(3)	57	58	59	60	
					51	62	63	(1)	65	66	67	68	69	70	
						(2)	73	74	75	76	7	78		(3)	
					θ	82	${ }^{3} 3$	84	85	86	87	88	99	90	
8	16	24	32	40		92	93	94	95	96	97	98			
48	56	64	72	80											

Skill: 6 times table															Year: 4
							3	4			7	8	9	10	Encourage daily counting in multiples, supported by a number line or a hundred square. Look for patterns in the six times table, using manipulatives to support. Make links to the 3 times table, seeing how each multiple is double the threes. Notice the pattern in the ones within each group of five multiples. Highlight that all the multiples are even using number shapes to support.
					11	(12)	13	14	15	16	17	(18)	19	20	
					21	22	23	(24)	25	26	27	28	29	3)	
					31	32	33	34	35	(3)	37	38	39	40	
					41	44)	43	44	45	46	47	(7)	49	50	
					51	52	53	(3)	55	56	57	58	59		
6	12	18	24	30	61	62	63	64	65	66	67	68	69	70	
36	42	48	5	60	71	72	73	74	75	76	77	78	79	80	
					81	82	83	84	85	86	87	88	89	90	
66	72	78	84	90	91	92	93	94	95	96	97	98	99	100	
-0000000-000000-000000-															

Skill: 9 times table															Year: 4
					1	2	3	4	5	6	7		(9)	10	Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the nine times table, using concrete manipulatives to support. Notice the pattern in the tens and ones using the hundred square to support as well as noting the odd, even pattern within the multiples.
					11	12	13	14	15	16	17	(19)	19	20	
					21	22	25	24	25	26	(2)	28	29	30	
					31	32	33	34	35	35	37	38	39	40	
					41	42	43	44	(1)	46	47	48	49	50	
9	18	27	36	45	51	52	53	(5)	55	56	57	58	59	60	
54	63	72	81	90	61	62	(3)	64	65	66	67	68	69	70	
71 (2) 73 74 75 76 77 78 79 80 (11) 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 -000000000-000000000-000000000-															

Skill: 7 times table														Year: 4
					1	2	3	4	5				10	Encourage daily counting in multiples both forwards and backwards, supported by a number line or a hundred square. The seven times table can be trickier to learn due to the lack of obvious pattern in the numbers, however they already know several facts due to commutativity. Children can still see the odd, even pattern in the multiples using number shapes to support.
					11	12	13	(14)	15	16	1718	19	20	
					(2)	22	23	24	25	26	27 (28)	29	30	
					31	32	33	34	(2)	36	37.38	39	40	
					41	(12)	43	44	45	45	47.48	(4)	0	
7	14	21	28	35	51	52	53	54	55	5	57.58	59	60	
42	49	56	63	70	61	62	(3)	64	65	66	6768	69		
71 72 75 74 75 76 07 78 79 80 81 82 83 94 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 -0000000-0000000-0000000-														

Skill: 11 times tab																Year: 4
11	22	33	44	55	66			3	4	5	6		8	9	10	Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the eleven times table, using concrete manipulatives to support. Notice the pattern in the tens and ones using the hundred square to support. Also consider the pattern after crossing 100
								13	14	15	16	17	18	19	20	
7	88	99	110	121	132		(2)	23	24	25	26	27	28	29	30	
be supported using a number line or a hundred square. Look for patterns in the eleven times table, using concrete manipulatives to support. Notice the pattern in the tens and ones using the hundred square to support. Also consider the pattern after crossing 100																

Multiplication

Skill: Solve 1-step problems using multiplication \quad\begin{tabular}{l}

\multicolumn{1}{c|}{| Year: $1 / 2$ |
| :--- |
| Children represent |
| multiplication as |
| repeated addition in |
| many different ways. |
| In Year 1, children use |
| concrete and pictorial |
| representations to |
| solve problems. They |
| are not expected to |
| record multiplication |
| formally. |}

In Year 2, children are

introduced to the

multiplication symbol
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Skill: Multiply 4-digit numbers by 1-digit numbers} \& Year: 5 \\
\hline \& \begin{tabular}{c}
Th \\
1 \\
\hline
\end{tabular} \& \begin{tabular}{l}
H \\
8 \\
\hline
\end{tabular} \& \(T\)
2

7 \& \& | When multiplying 4digit numbers, place value counters are the best manipulative to use to support children in their understanding of the formal written method. |
| :--- |
| If children are multiplying larger numbers and struggling with their times tables, encourage the use of multiplication grids so children can focus on the use of the written method. |

\hline
\end{tabular}

Skill: Multiply 4-digit numbers by 2 -digit numbers					Year: 5/6
					When multiplying 4digits by 2 -digits, children should be confident in using the formal written method. If they are still struggling with times tables, provide multiplication grids to support when they are focusing on the use of the method. Consider where exchanged digits are placed and make sure this is consistent.
TTh	Th	H	T	0	
	2	7	3	9	
\times			2	8	
2^{2}	5^{1}	3^{9}	7^{1}	2	
1^{5}	4	1^{7}	8	0	
7	6	6	9	2	
$2,739 \times 28=76,692$					

Division

Skill: Solve 1-step problems using division (grouping) \quad| Year: $1 / 2$ |
| :--- |

Skill: Divide 2-digits by 1-digit (sharing with no exchange) \begin{tabular}{l}
Year: 3

\hline | When dividing larger |
| :--- |
| numbers, children can |
| use manipulatives |
| that allow them to |
| partition into tens and |
| ones. |

Straws, Base 10 and
place value counters
can all be used to
share numbers into
equal groups.

Part-whole models

can provide children

with a clear written

method that matches

the concrete

representation.
\end{tabular}

Glossary

Addend - A number to be added to another.
Aggregation - combining two or more quantities or measures to find a total.
Array - An ordered collection of counters, cubes or other item in rows and columns
Augmentation - increasing a quantity or measure by another quantity.
Commutative - numbers can be added or multiplied in any order.
Complement - in addition, a number and its complement make a total e.g. 300 is the complement to 700 to make 1,000

Difference - the numerical difference between two numbers is found by comparing the quantity in each group.

Dividend - In division, the number that is divided.
Divisor - In division, the number by which another is divided.

Exchange - Change a number or expression for another of an equal value.
Factor - A number that multiplies with another to make a product
Minuend - A quantity or number from which another is subtracted.
Multiplicand - In multiplication, a number to be multiplied by another.
Partitioning - Splitting a number into its component parts.
Product - The result of multiplying one number by another.
Quotient - The result of a division

Reduction - Subtraction as take away.
Remainder - The amount left over after a division when the divisor is not a factor of the dividend.
Scaling - Enlarging or reducing a number by a given amount, called the scale factor
Subitise - Instantly recognise the number of objects in a small group without needing to count.
Subtrahend - A number to be subtracted from another.
Sum - The result of an addition.
Total - The aggregate or the sum found by addition.

