Use the formula ${\bf base} \times {\bf height}$ to calculate the area of a parallelogram.

1) Find the area of each parallelogram.

cm

2) Calculate the area of each parallelogram.

α)

cm

b)

cm²

3) Calculate the missing measurements for these parallelograms.

a)

b)

Use the formula ${\bf base} \times {\bf height}$ to calculate the area of a parallelogram.

1) Ania has been counting squares to find the area of these shapes.

I think that the parallelogram has a larger area than the rectangle.

Is Ania correct? Explain to Ania how to check if she is correct by using a calculation.

2) Hamish has worked out that each parallelogram has an area of 42cm^2 .

 $14cm \times 3cm = 42cm^2$

Do you agree with Hamish? Explain why.

Use the formula **base × height** to calculate the area of a parallelogram.

1) I am thinking of a parallelogram with side lengths that are whole numbers.

It has an area of 84cm².

Its height measures between 10cm and 30cm. Its base measures between 2cm and 10cm.

Give the dimensions of all the possible parallelograms I could be thinking of.

2) DIY Dan is decorating his bathroom with these tiles:

15cm

One wall of his bathroom has an area of 4800cm².

a) How many tiles will DIY Dan need to decorate this wall?

b) DIY Dan spends another £175 decorating the rest of his bathroom with tiles. How many more tiles did DIY Dan

