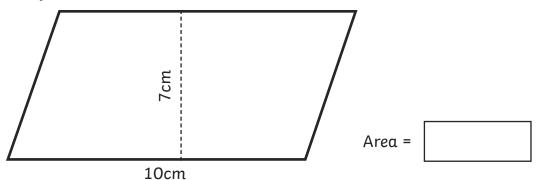

Find the Dimensions

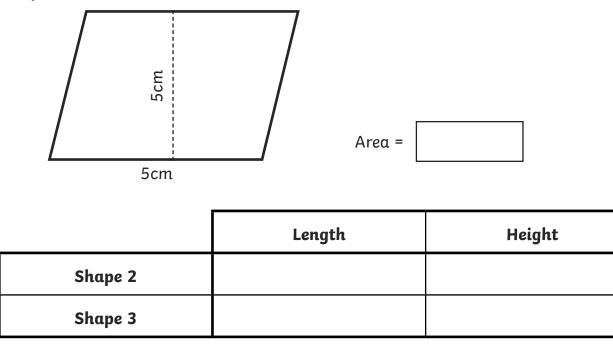
I can find the area of parallelograms.

Calculate the area of each parallelogram, then give the possible dimensions of two other parallelograms which have the same area. You may use fractional measurements, for example 3.5cm.

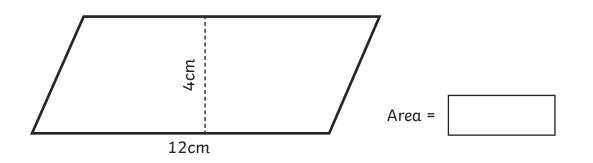

a) Shape 1

	Length	Height
Shape 2		
Shape 3		

b) Shape 1



	Length	Height
Shape 2		
Shape 3		



c) Shape 1

d) Shape 1

	Length	Height
Shape 2		
Shape 3		

Find the Dimensions Answers

a) Shape area = **24cm**²

Other 2 shapes have dimensions which give an area of 24cm² when multiplied together. Allow half unit measurements, e.g. Icm × 24cm, I.Scm × I6cm, 2cm × I2cm, 4cm × 6cm.

b) Shape area = **70cm**²

Other 2 shapes have dimensions which give an area of 70cm² when multiplied together. Allow half unit measurements, Icm × 70cm, 2cm × 35cm, 2.5cm × 28cm, 5cm × 14cm, 3.5cm × 20cm.

c) Shape area = **25cm**²

Other 2 shapes have dimensions which give an area of 25cm² when multiplied together. Allow half unit measurements, Icm × 25cm, 2cm × 12.5cm, 2.5cm × 10cm.

d) Shape area = **48cm**²

Other 2 shapes have dimensions which give an area of 48cm² when multiplied together. Allow half unit measurements, Icm × 48cm, I.5cm × 32cm, 2cm × 24cm, 3cm × 16cm, 6cm × 8cm.

